A RELATION BETWEEN TWO BIHARMONIC GREEN'S FUNCTIONS ON RIEMANNIAN MANIFOLDS

RY

DENNIS HADA (1)

ABSTRACT. The biharmonic Green's function γ whose values and Laplacian are identically zero on the boundary of a region and the biharmonic Green's function Γ whose values and normal derivative vanish on the boundary originated in the investigation of thin plates whose edges are simply supported or clamped, respectively. A relation between these two biharmonic Green's functions known for planar regions is extended to Riemannian manifolds thereby establishing that any Riemannian manifold for which γ exists must also carry Γ .

Introduction. In a paper by N. Aronszajn, the integral representation of Γ given by

$$\Gamma(x,y) = \int_{D} g(x,\xi)g(y,\xi)d\xi - \int_{D} g(x,\xi)k(\xi,\eta)g(y,\eta)d\xi d\eta$$

is credited to S. Zaremba (see [1, p. 387]) where g is the harmonic Green's function, k is the reproducing kernel for the square integrable harmonic functions and D is a regular subregion of the plane. (For physical interpretations of γ and Γ alluded to in the abstract, see e.g. [2, Chapter IV, particularly pp. 236, 242]. An informative discussion relating k and Γ for plane regions is given in [3] and [4, pp. 265–272].) In the present paper, we note that in this representation of Γ , the first term is none other than γ , and the second term is the reproducing kernel K for the biharmonic potentials with square integrable Laplacians w.r.t. an appropriate inner product (,). Also, in extending this relation between γ and Γ to Riemannian manifolds it is more natural to consider it as a representation of γ . Explicitly, we prove

THEOREM 1. On an arbitrary Riemannian manifold, if γ exists, then K and Γ also exist. Furthermore, K and Γ are orthogonal w.r.t. (,) and $\gamma = K + \Gamma$.

Received by the editors September 25, 1975.

AMS (MOS) subject classifications (1970). Primary 31B10, 31B15, 31B30; Secondary 31B05. Key words and phrases. Biharmonic Green's functions, biharmonic reproducing kernel, Riemannian manifold.

⁽¹⁾ Supported in part by the National Science Foundation, Grant F76210F727B012, University of Hawaii.

C American Mathematical Society 1977

1. **Definitions.** Let R denote a Riemannian manifold, Δ its Laplace-Beltrami operator, and g_x^{Ω} the harmonic Green's function for a regular subregion $\Omega \subset R$ with pole $x \in \Omega$. Expressed by γ_x^{Ω} the biharmonic Green's function of Ω satisfying the boundary conditions

$$\gamma_r^{\Omega} = 0$$
, $\Delta \gamma_r^{\Omega} = 0$ on $\partial \Omega$,

and by Γ_x^{Ω} the biharmonic Green's function of Ω satisfying

$$\Gamma_x^{\Omega} = 0, \quad \frac{\partial}{\partial \nu} \Gamma_x^{\Omega} = 0 \text{ on } \partial \Omega,$$

and where each biharmonic Green's function has a fundamental singularity at x, i.e. $\Delta \gamma_x^{\Omega} - g_x^{\Omega}$ and $\Delta \Gamma_x^{\Omega} - g_x^{\Omega}$ each can be extended to a function harmonic in all of Ω . In the above, $\partial/\partial \nu$ refers to the normal derivative and ∂ is the boundary operator.

If $\{\Omega\}$ is an exhaustion of R by regular subregions, the biharmonic Green's functions γ_x , Γ_x of R are said to exist provided the limits $\gamma_x = \lim \gamma_x^{\Omega}$ and $\Gamma_x = \lim \Gamma_x^{\Omega}$ as $\Omega \nearrow R$ exist and are finite on $R - \{x\}$. (Throughout this paper, if there is no reference to any region, it will be understood that the region shall be the entire manifold R, e.g. $\gamma_x = \gamma_x^R$, $\Gamma_x = \Gamma_x^R$.) If γ_x (similarly Γ_x) exists for all $x \in R$, we say that R possesses the biharmonic Green's function γ (respectively Γ). The family of Riemannian manifolds void of γ or Γ is denoted by O_{γ} or O_{Γ} , respectively.

Corollary. $O_{\Gamma} \subset O_{\gamma}$.(2)

2. The biharmonic Green's function γ . The class of parabolic manifolds (manifolds R void of the harmonic Green's function g, i.e. $g_x = \lim_{\Omega \nearrow R} g_x^{\Omega}$ is not finite for some $x \in R$) is customarily denoted by O_G . For $R \notin O_G$, we define a family F of real valued functions on R by

$$F = \left\{ f \middle| \int_{R} |f(\xi)| g_{x}(\xi) d\xi \text{ is well defined and finite for all } x \in R \right\},$$

and for $f \in F$ we define the function Gf on R by

$$Gf(x) = \int_{R} f(\xi) g_{x}(\xi) d\xi = \langle f, g_{x} \rangle.$$

The G-operator is an "inverse" for Δ in the following sense:

(i) If
$$f \in F$$
 and $Gf \in C^2(R)$, then $\Delta Gf = f$.

⁽²⁾ Subsequent to the writing of this paper, the author has been informed that although presently unavailable in the literature, two alternative proofs of the relation $O_{\Gamma} \subset O_{\gamma}$ are known-both using entirely different methods from those presented here. Furthermore, it is known that $\phi < O_{\Gamma} < O_{\gamma}$ (Chung-Nakai-Ralston-Sario).

(ii) If $\varphi \in C_0^{\infty}$, i.e. φ is C^{∞} and has compact support in R, then $G\Delta \varphi = \varphi$. (For the proof of (i) see e.g. Sario-Wang-Range [9], and for the proof of (ii) merely apply Green's identity to g and φ .)

THEOREM 2. If γ_x exists on R, $x \in R$, then $R \notin O_G$ and

$$\gamma_x(y) = \int_R g_x(\xi)g_y(\xi)d\xi$$
 for all $y \in R$.

PROOF. By the Monotone Convergence Theorem, it suffices to show that for each regular subregion Ω , $x, y \in \Omega$, $\gamma_x^{\Omega}(y) = \int_{\Omega} g_x^{\Omega}(\xi) g_y^{\Omega}(\xi) d\xi$. Set $f_x(y) = \int_{\Omega} g_x^{\Omega}(\xi) g_y^{\Omega}(\xi) d\xi$; then $f_x = 0$ on $\partial\Omega$ since $g_y^{\Omega} = 0$ for $y \in \partial\Omega$. Furthermore, $\Delta f_x = g_x^{\Omega}$. To see this, we observe that for every $\varphi \in C_0^{\infty}(\Omega)$,

$$\langle g_{r}^{\Omega}, \varphi \rangle_{\Omega} = \langle g_{r}^{\Omega}, G_{\Omega} \Delta \varphi \rangle_{\Omega} = \langle f_{r}, \Delta \varphi \rangle_{\Omega} = \langle \Delta f_{r}, \varphi \rangle_{\Omega}.$$

The first equality is just property (ii) satisfied by the G-operator; the second equality comes from an application of Fubini's Theorem, and the last equality utilizes Green's identity. From $\Delta f_x = g_x^{\Omega}$, we see that f_x has a biharmonic singularity at x, and $\Delta f_x = 0$ on $\partial \Omega$. Hence, f_x satisfies the conditions that uniquely define γ_x^{Ω} , i.e.

$$\gamma_x^{\Omega}(y) = f_x(y) = \int_{\Omega} g_x^{\Omega}(\xi) g_y^{\Omega}(\xi) d\xi.$$

COROLLARY 1. γ is positive and symmetric.

COROLLARY 2. If γ_x exists for some $x \in R$, then γ_x exists for all $x \in R$.

PROOF. For an arbitrary $y \in R$, we must show that $\gamma_y < \infty$ assuming $\gamma_x < \infty$ for some $x \in R$. As just seen, the existence of γ_x for some x implies the existence of g_x for all x. Let Ω be a regular subregion containing both x and y. For $\xi \in R$ and distinct from x and y, let $C_1(\xi) = \langle g_y, g_\xi \rangle_{\Omega} / \langle g_x, g_\xi \rangle_{\Omega}$, $m = \min g_x$ and $M = \max g_y$ on $\partial \Omega$. We then have

$$\begin{split} \gamma_{y}(\xi) &= \langle g_{y}, g_{\xi} \rangle_{\Omega} + \langle g_{y}, g_{\xi} \rangle_{R-\Omega} \\ &\leq C_{1}(\xi) \langle g_{x}, g_{\xi} \rangle_{\Omega} + (M/m) \langle g_{x}, g_{\xi} \rangle_{R-\Omega} \leq C(\xi) \gamma_{x}(\xi) \end{split}$$

where $C(\xi) = \max\{C_1(\xi), M/m\} < \infty$.

3. Square integrable harmonic functions. Let $HL^2(R)$ denote the square integrable harmonic functions on a Riemannian manifold R, and let $||h|| = \langle h, h \rangle^{1/2}$ for $h \in HL^2(R)$.

THEOREM 3. For an arbitrary Riemannian manifold R, $HL^2(R)$ is a Hilbert space. Furthermore, there exists a positive function M on R satisfying

(1)
$$|h| \leqslant M||h|| for all h \in HL^2(R)$$

and for which $M_E = \sup_{x \in E} M(x) < \infty$ for every compact $E \subset R.(3)$

PROOF. We first consider the existence of M together with the finiteness of M_E . Given compact E, let Ω be a regular subregion containing E. For $x \in E$, c > 0, let $A_c(x)$ be the annular region

$$A_c(x) = \{ \xi \in \Omega | g_x^{\Omega}(\xi) \leqslant c \} \quad \text{and} \quad M_1 = \sup_{x \in E, \xi \in A_c(x)} |\operatorname{grad}_{\xi} g_x^{\Omega}(\xi)|.$$

The finiteness of M_1 is a consequence of the continuity of $g_x^{\Omega}(\xi)$ and $|\operatorname{grad}_{\xi} g_x^{\Omega}(\xi)|$ on $\Omega \times \Omega$ -diagonal and the fact that $\sup_{x \in E, \xi \in A_c(x)} g_x^{\Omega}(\xi) = c$. We think of $A_c(x)$ as being composed of a collection of level surfaces $\{S_d(x)\}_{0 \le d \le c}$ where $S_d(x) = \{\xi \in \Omega | g_x^{\Omega}(\xi) = d\}$. If α is a flow line joining S_{d_1} to S_{d_2} , $0 \le d_1 < d_2 \le c$, we have

$$d_2 - d_1 = \int_{\alpha} |\operatorname{grad}_{\xi} g_x^{\Omega}(\xi)| dL_{\xi} \leqslant M_1(\operatorname{length} \alpha)$$

where dL_{ξ} refers to arc length. Hence, $(d_2 - d_1)/M_1 \le \text{length } \alpha$. From this along with

$$|h(x)| \leq \int_{S_d} \left| \frac{\partial}{\partial \nu_{\xi}} g_x^{\Omega}(\xi) \right| \cdot |h(\xi)| \, dS_{\xi}, \qquad x \in E, \, 0 \leq d \leq c,$$

it follows that

$$|h(x)|\frac{c}{M_1} \leq M_1 \int_{A_c(x)} |h(\xi)| dV_{\xi}.$$

Here, dS_{ξ} is the surface element and dV_{ξ} is the volume element. Thus, by Schwarz we obtain

$$|h(x)| \leq (M_1^2/c)\sqrt{\operatorname{vol}\Omega} \|h\|$$
 for all $x \in E$, $h \in HL^2$.

The existence of M and the finiteness of M_E is now clear.

To see that HL^2 is a Hilbert space, let $\{\tilde{h_n}\}$ be Cauchy in HL^2 . By the first part of this proof just completed,

$$|h_n(x) - h_m(x)| \le M_E ||h_n - h_m||, \quad x \in E.$$

Hence there exists h harmonic on R for which $h_n \to h$ uniformly on compact subsets of R. In particular, $||h - h_n||_E \to 0$ as $n \to \infty$. Also, $\{||h_n||\}$ is bounded

⁽³⁾ The reader might find it enlightening to compare the first part of this proof with an inequality given in [3, p. 503].

since $\{h_n\}$ is Cauchy. We conclude that $h \in HL^2$ from the inequality

$$||h||_E \le ||h - h_n||_E + ||h_n||$$

by taking the limit as $n \to \infty$ and then the supremum over all compact $E \subset R$. To see that $h_n \to h$ in norm, we consider the inequality

$$||h - h_n|| \le ||h - h_n||_E + ||h_N - h_n|| + ||h_N||_{R-E} + ||h||_{R-E}.$$

Regarding the R.H.S., choose N sufficiently large so that the second term is $\leq \varepsilon/4$ for all $n \geq N$, then choose E so large that the sum of the last two terms $\leq \varepsilon/2$, and finally take $n \geq N$ and large enough that the first term $\leq \varepsilon/4$. We restate Theorem 3 in an equivalent form.

THEOREM 3'. For an arbitrary Riemannian manifold R, $HL^2(R)$ is a Hilbert space, and there exists a unique symmetric reproducing kernel $k \in HL^2(R)$ satisfying $h = \langle h, k \rangle$ for all $h \in HL^2(R)$. Also, $k_E = \sup_{x \in E} k_x(x) < \infty$ for each compact $E \subset R$.

That Theorem 3' implies Theorem 3 is clear. Conversely, the existence of k_x is assured by the Riesz representation theorem for bounded functionals defined on a Hilbert space, and by (1) which says, for every $x \in R$, evaluation is a bounded functional on HL^2 . That k_E is finite is seen by substituting k_x into (1) thereby obtaining $k_E \leq M_E^2$. The symmetry and uniqueness of k is confirmed in the usual manner.

LEMMA 1. $k_x(y)$ is continuous on $R \times R$.

PROOF. Fix $x_0, y_0 \in R$ and consider the inequality

$$|k_{y}(x) - k_{y_0}(x_0)| \leq |k_{y}(x) - k_{y_0}(x)| + |k_{y_0}(x) - k_{y_0}(x_0)|, \quad x, y \in R.$$

On the R.H.S., the second term offers no difficulty since k_{y_0} is continuous, in fact harmonic, and we direct our attention to the first term.

Let U, V be regular subregions of R. By Schwarz $|k_x(y)|^2 \le k_x(x)k_y(y)$ so that by Theorem 3' k is bounded on $U \times V$. Consequently, there is no harm in assuming that k is positive on $U \times V$. Let U_1 be a regular subregion whose closure \overline{U}_1 is contained in U. For $x \in \overline{U}_1$, y, $y_0 \in V$, we have

$$k_{y}(x) - k_{y_{0}}(x) = \int_{\partial U} (k_{y}(\xi) - k_{y_{0}}(\xi)) \frac{\partial}{\partial \nu_{\xi}} g_{x}^{U}(\xi) dS_{\xi}.$$

By the continuity of $\partial g_x^U(\xi)/\partial \nu_{\xi}$ on $\overline{U}_1 \times \partial U$,

$$(2) |k_{y}(x) - k_{y_0}(x)| \leq \operatorname{const} \int_{\partial U} |k_{y}(\xi) - k_{y_0}(\xi)| \, dS_{\xi}, x \in \overline{U}_1.$$

By Harnack's inequality there exists c > 0 such that

$$0 < k_{\nu}(\xi) = k_{\xi}(y) < ck_{\xi}(y_0) = ck_{\nu_0}(\xi)$$

for all $y \in V_1 \subset V$, $\xi \in \partial U$. Therefore,

$$|k_{y}(\xi) - k_{y_0}(\xi)| \le (c+1)k_{y_0}(\xi),$$

where the R.H.S. is integrable over the ∂U . Hence the Lebesgue Dominated Convergence Theorem applies to (2), and the proof is herewith complete.

Let Ω denote a regular subregion of R and Ω' another regular subregion or possibly $\Omega' = R$.

LEMMA 2. For every $x \in \Omega \subset \Omega'$,

$$0 \leqslant \|k_x^{\Omega} - k_x^{\Omega'}\|_{\Omega}^2 \leqslant k_x^{\Omega}(x) - k_x^{\Omega'}(x).$$

Proof. Expand $\langle k_x^{\Omega} - k_x^{\Omega'}, k_x^{\Omega} - k_x^{\Omega'} \rangle_{\Omega}$ and employ the reproducing properties of k_x^{Ω} and $k_x^{\Omega'}$.

REMARK. Taking Ω' to be R, we obtain as an immediate consequence of Lemma 2 that

$$||k_x^{\Omega}||_{\Omega}^2 = k_x^{\Omega}(x) \setminus k_x(x) = ||k_x||^2.$$

Thus, $k_x^{\Omega} \to k_x$ in L^2 norm which together with (1) of Theorem 3 says that the convergence is also uniform on compacta.

4. A reproducing kernel for biharmonic potentials with square integrable Laplacians. If $R \notin O_{\gamma}$, then $HL^2 \subset F$. To see this, recall that in the proof of Corollary 2 in §2, for fixed $x, y \in \Omega$, $x \neq y$, $g_y \leq (M/m)g_x$ on $R - \Omega$ so that

(3)
$$\|g_{\nu}\|_{R-\Omega} \leq (M/m)\langle g_{\nu}, g_{x}\rangle_{R-\Omega} < \gamma_{x}(y) < \infty.$$

Hence, for $h \in HL^2(R)$,

$$\int_{R} |h(\xi)| g_{y}(\xi) d\xi = \langle |h|, g_{y} \rangle_{\Omega} + \langle |h|, g_{y} \rangle_{R-\Omega}$$

$$\leq \langle |h|, g_{y} \rangle_{\Omega} + ||h|| ||g_{y}||_{R-\Omega} < \infty.$$

If $R \notin O_{\gamma}$, by the biharmonic potentials with square integrable Laplacians, we mean $GHL^2 = \{Gh|h \in HL^2\}$. We define an inner product (,) on GHL^2 by

$$(u,v) = \langle \Delta u, \Delta v \rangle, \quad u, v \in GHL^2$$

and denote the induced norm by ||| |||.

THEOREM 4. If $R \notin O_{\gamma}$, then $GHL^{2}(R)$ is a Hilbert space, and there exists a positive function \mathbf{M}^{R} such that $|u| \leq \mathbf{M}^{R} |||u|||$ for all $u \in GHL^{2}(R)$.

PROOF. That GHL^2 is a Hilbert space is easily seen from the fact that HL^2 is a Hilbert space.

For $x \in R$ and c > 0, let $U = \{\xi \in R | g_x(\xi) > c\}$. For $u \in GHL^2$, apply Green's identity to γ_x^U and $h = \Delta u$ thereby obtaining

$$G_U h(x) = \int_{\partial U} h(\xi) \frac{\partial}{\partial \nu_{\xi}} \gamma_x^U(\xi) dS_{\xi}.$$

From this representation together with the reasoning as given in the first part of Theorem 3, it follows that there exists m(x) > 0 such that $|G_U h(x)| \le m^U(x) ||h||_U$ for all $u \in GHL^2$. Note that $G_U h(x) = \langle h, g_x - c \rangle_U$ since $g_x^U = g_x - c$ on U. Consequently, $|\langle h, g_x - c \rangle_U| \le m^U(x) ||h||_U$. Therefore, we have

$$\begin{aligned} |u(x)| & \leq |\langle h, g_x - c \rangle_U| + |\langle h, c \rangle_U| + |\langle h, g_x \rangle_{R-U}| \\ & \leq m^U(x) \|h\|_U + c\sqrt{\operatorname{vol} U} \|h\|_U + \|g_x\|_{R-U} \|h\|_{R-U} \\ & \leq \mathbf{M}^R(x) \|\|u\|\| \end{aligned}$$

where

(4)
$$\mathbf{M}^{R}(x) = \max\{m^{U}(x) + c\sqrt{\text{Vol }U}, \|g_{x}\|_{R-U}\}$$

is finite and independent of u.

THEOREM 4'. If $R \notin O_{\gamma}$, then $GHL^2(R)$ is a Hilbert space and there exists a unique symmetric reproducing kernel $K \in GHL^2(R)$ such that u = (u, K) for all $u \in GHL^2(R)$.

Theorem 5. If $R \notin O_{\gamma}$, then

$$K_{x}(y) = \int_{R \times R} g_{x}(\xi) k_{\xi}(\eta) g_{y}(\eta) d\xi d\eta, \quad x, y \in R.$$

PROOF. Define h_x on R by $h_x(\xi) = Gk_{\xi}(x)$; then we claim that $h_x = \Delta K_x$. To establish our claim, it suffices to show that $\langle \varphi, h_x \rangle = \langle \varphi, \Delta K_x \rangle$ for all $\varphi \in C_0^{\infty}$. Since HL^2 is a closed subspace of L^2 , there exist unique $\varphi_1 \in HL^2$, $\varphi_2 \in (HL^2)^{\perp}$ such that $\varphi = \varphi_1 + \varphi_2$. Here $(HL^2)^{\perp}$ denotes the orthogonal complement of HL^2 in L^2 . Therefore,

$$\begin{split} \langle \varphi, h_{x} \rangle &= \int_{R} \varphi(\xi) G k_{\xi}(x) \, d\xi = \int_{R} \varphi(\xi) \bigg(\int_{R} k_{\xi}(\eta) g_{x}(\eta) \, d\eta \bigg) d\xi \\ &= \int_{R} \bigg(\int_{R} \varphi(\xi) k_{\eta}(\xi) \, d\xi \bigg) g_{x}(\eta) \, d\eta = \int_{R} \varphi_{1}(\eta) g_{x}(\eta) \, d\eta = G \varphi_{1}(x). \end{split}$$

The first equality is just the definition of h_x , the second and last equalities come from the definition of the G-operator, the third equality is Fubini, and the fourth equality uses the reproducing property of k_{η} and the fact that φ_2 and k_{η} are orthogonal. On the other hand, by the orthogonality of φ_2 and ΔK_x , by property (i) of §2, by the definition of (,), and by the reproducing property of K_x , we have

$$\langle \varphi, \Delta K_x \rangle = \langle \varphi_1, \Delta K_x \rangle = \langle \Delta G \varphi_1, \Delta K_x \rangle = (G \varphi_1, K_x) = G \varphi_1(x),$$

which completes the proof of our claim.

Since $K_x \in GHL^2$ there exists $h \in HL^2$ such that $K_x = Gh$. However, $h_x = \Delta K_x = h$ so that $K_x = Gh_x$ which when written out is the R.H.S. of our theorem

5. Convergence of reproducing kernels for potentials. In this section, we prove the following theorem.

THEOREM 6. For $R \notin O_{\gamma}$, $K^{\Omega} \to K$ pointwise and in norm ||| ||| as $\Omega \nearrow R$.

LEMMA 3. If
$$R \notin O_x$$
, then for every $x \in R \|g_x - g_x^{\Omega}\| \ge 0$ as $\Omega \nearrow R$.

PROOF. By (3) at the beginning of §4, $R \notin O_{\gamma}$ guarantees that $\|g_x\|_{R-\Omega} < \varepsilon/3$ for given $\varepsilon > 0$ and sufficiently large Ω . Having chosen such an Ω , choose c > 0 so small that $\Omega \subset \Omega'$ where $\Omega' = \{\xi \in R | g_x(\xi) > c\}$ and $c\sqrt{\operatorname{vol}\Omega} < \varepsilon/3$. Consider the inequality

$$\|g_{x} - g_{x}^{\Omega'}\| \leq \|g_{x}\|_{R-\Omega} + \|g_{x}^{\Omega'}\|_{R-\Omega} + \|g_{x} - g_{x}^{\Omega'}\|_{\Omega}.$$

Since $\|g_x^{\Omega'}\|_{R-\Omega} < \|g_x\|_{R-\Omega} < \varepsilon/3$, the sum of the first two terms on the R.H.S. is $< 2\varepsilon/3$. Furthermore, $g_x - g_x^{\Omega'}$ is harmonic on Ω' and = c on $\partial\Omega'$ so that $g_x - g_x^{\Omega'} = c$ throughout Ω' . Therefore, the last term $= c\sqrt{\operatorname{vol}\Omega} < \varepsilon/3$ which completes the proof.

Regarding functions which up to now were considered to be defined only on some subregion Ω of a Riemannian manifold R, we shall find it convenient to henceforth consider them to be defined on all of R by making them = 0 on the complement of Ω . In particular, by setting $g^{\Omega} = 0$ outside of Ω , we have also extended G_{Ω} to be an operator on F(R)-explicitly, $G_{\Omega}f(x) = 0$, $x \in R - \Omega$, $f \in F(R)$. Not only will our notation fail to distinguish between a function defined on Ω and its trivial extension, it will continue to ignore the distinction between a function and its restriction.

Recall from the proof of Theorem 5, the function h_x given by $h_x(\xi) = Gk_{\xi}(x)$, and similarly define h_x^{Ω} by $h_x^{\Omega}(\xi) = G_{\Omega} k_{\xi}^{\Omega}(x)$. Also define $h_{\Omega,x}$ by $h_{\Omega,x}(\xi) = G_{\Omega} k_{\xi}(x)$. Considerations at the beginning of §4 assure that these functions are well defined. That $h_x \in L^2$ is clear since $h_x = \Delta K_x \in L^2$ and similarly for h_x^{Ω} . To show $h_{\Omega,x}$ is square integrable, we need only show that $h_x - h_{\Omega,x} \in L^2$. We note that $f = g_x - g_x^{\Omega} \in L^2$ by Lemma 3 and that $h_x(\xi) - h_{\Omega,x}(\xi) = \langle f, k_{\xi} \rangle$. Since $f = f_1 + f_2$ with $f_1 \in HL^2$ and $f_2 \in (HL^2)^{\perp}$, we see that $\langle f, k_{\xi} \rangle = f_1(\xi)$. Therefore we conclude,

$$||h_x - h_{\Omega,x}|| = ||f_1|| \le ||f_1|| + ||f_2|| = ||f|| = ||g_x - g_x^{\Omega}|| < \infty.$$

We have proven:

LEMMA 4. Given $R \notin O_{\gamma}$, then h_x , $h_{\Omega,\chi} \in HL^2(R)$, and $||h_x - h_{\Omega,\chi}|| \to 0$ as $\Omega \nearrow R$. In fact, $||h_x - h_{\Omega,\chi}|| \le ||g_x - g_x^{\Omega}||$.

LEMMA 5. For $R \notin O_{\gamma}$, $||h_{x} - h_{x}^{\Omega}|| \to 0$ as $\Omega \nearrow R$.

PROOF. Since

$$||h_{x} - h_{x}^{\Omega}|| \le ||h_{x} - h_{\Omega, x}|| + ||h_{\Omega, x} - h_{x}^{\Omega}||,$$

by Lemma 4 we need only show that $\|h_{\Omega,x} - h_x^{\Omega}\|_E \to 0$ as $\Omega \nearrow R$ for every compact E. By the definitions of $h_{\Omega,x}$ and h_x^{Ω} , the linearity of the G_{Ω} -operator, Theorem 4, and Lemma 2, we have for all $\Omega \supset E$,

$$\begin{split} \int_{E} \left(h_{\Omega,x}(\xi) - h_{x}^{\Omega}(\xi) \right)^{2} d\xi &= \int_{E} \left(G_{\Omega} k_{\xi}(x) - G_{\Omega} k_{\xi}^{\Omega}(x) \right)^{2} d\xi \\ &= \int_{E} \left[G_{\Omega} (k_{\xi} - k_{\xi}^{\Omega}) \right]^{2} (x) d\xi \leqslant \left(\mathbf{M}^{\Omega}(x) \right)^{2} \int_{E} \| k_{\xi} - k_{\xi}^{\Omega} \|_{\Omega}^{2} d\xi \\ &\leqslant \left(\mathbf{M}^{\Omega}(x) \right)^{2} \int_{E} \left(k_{\xi}^{\Omega}(\xi) - k_{\xi}(\xi) \right) d\xi. \end{split}$$

By (4) in §4, we see that $\mathbf{M}^{\Omega}(x) < \mathbf{M}^{R}(x) < \infty$. Also, by Lemmas 1 and 2, $k_{\xi}^{\Omega}(\xi)$ and $k_{\xi}(\xi)$ are measurable, in fact continuous, and $k_{\xi}^{\Omega}(\xi) \searrow k_{\xi}(\xi)$ on E so that the Monotone Convergence Theorem assures the last expression $\rightarrow 0$ as $\Omega \nearrow R$.

Completion of the proof of Theorem 6. Subtracting and adding $\langle K_x^{\Omega}, K_{\xi} \rangle$ and by Schwarz, we obtain

$$|K_{x}(\xi) - K_{x}^{\Omega}(\xi)| \leq |||K_{\xi}||| \cdot |||K_{x} - K_{x}^{\Omega}||| + |||K_{x}^{\Omega}||| \cdot ||K_{\xi} - K_{\xi}^{\Omega}|||,$$

so that we need only show $K_x^{\Omega} \to K_x$ in norm. However, $||K_x - K_x^{\Omega}||$ $= ||h_x - h_x^{\Omega}|| \to 0$ as $\Omega \nearrow R$.

6. Completion of the proof of Theorem 1. We first show that $\Gamma_x^{\Omega} = \gamma_x^{\Omega} - K_x^{\Omega}$ for each regular subregion Ω , $x \in \Omega$. Since K_x^{Ω} is biharmonic on Ω and γ_x^{Ω} has a biharmonic singularity at $x \in \Omega$, surely $\gamma_x^{\Omega} - K_x^{\Omega}$ is biharmonic on $\Omega - \{x\}$ and possesses a biharmonic singularity at x. It is also clear that $\gamma_x^{\Omega} - K_x^{\Omega} = 0$ on $\partial \Omega$ since each term = 0 on $\partial \Omega$. Using this together with Green's identity, we have

$$(5) \quad \int_{\partial\Omega} h(\xi) \frac{\partial}{\partial \nu_{\xi}} (\gamma_{x}^{\Omega}(\xi) - K_{x}^{\Omega}(\xi)) dS_{\xi} = -\int_{\Omega} h(\xi) \Delta(\gamma_{x}^{\Omega}(\xi) - K_{x}^{\Omega}(\xi)) dV_{\xi}$$

where h is harmonic. Since $\int_{\Omega} h(\xi) \Delta \gamma_x^{\Omega}(\xi) dV_{\xi} = G_{\Omega} h(x)$ and $\int_{\Omega} h(\xi) \Delta K_x^{\Omega}(\xi) = G_{\Omega} h(x)$, we conclude that the R.H.S. of (5) = 0. Applying Green's identity to the function $\equiv 1$ and $\gamma_x^{\Omega} - K_x^{\Omega}$, we see that $\int_{\partial\Omega} (\partial/\partial \nu_{\xi}) (\gamma_x^{\Omega}(\xi) - K_x^{\Omega}(\xi)) dS_{\xi} = 0$. Hence there exists a harmonic solution to the boundary value problem $h = (\partial/\partial\nu)(\gamma_x^{\Omega} - K_x^{\Omega})$ on $\partial\Omega$. Substituting this solution into (5), we see that $(\partial/\partial\nu)(\gamma_x^{\Omega} - K_x^{\Omega}) = 0$ on $\partial\Omega$, thereby verifying that $\Gamma^{\Omega} = \gamma^{\Omega} - K^{\Omega}$. Hence, if γ exists, by Theorem 6 K exists, and $\Gamma = \lim_{\Omega \to R} (\gamma^{\Omega} - K^{\Omega}) = \gamma - K$. Lastly, K and Γ are orthogonal since

$$(K_x,\Gamma_x) = \int_R \Delta K_x(\xi) (\Delta \gamma_x(\xi) - \Delta K_x(\xi)) d\xi = K_x(x) - K_x(x) = 0.$$

In closing, I would like to hint at other applications of the methods presented. From Theorem 2, it is immediate that the existence of a positive quasiharmonic function implies the existence of γ [5]. On the other hand, it is clear that the existence of γ assures that the biharmonic functions with square integrable Laplacians possess Riesz representations [6], [9]. Since Theorem 3' guarantees that k always exists, one can define a span whose vanishing is equivalent to the nonexistence of nonzero square integrable harmonic functions [8]. Also, K may be found useful in formulating and solving a biharmonic interpolation problem similar to one known for harmonic functions [4, pp. 275–280], [7].

BIBLIOGRAPHY

- 1. N. Aronszajn, Theory of reproducing kernels, Trans. Amer. Math. Soc. 68 (1950), 337-404. MR 14, 479.
- 2. S. Bergman and M. Schiffer, Kernel functions and elliptic differential equations in mathematical physics, Academic Press, New York, 1953. MR 14, 876.
- 3. P. Garabedian, A partial differential equation arising in conformal mapping, Pacific J. Math. 1 (1951), 485-524. MR 13, 735.
- 4. ——, Partial differential equations, 2nd ed., Wiley, New York, 1967.
- 5. M. Nakai and L. Sario, Quasiharmonic classification of Riemannian manifolds, Proc. Amer. Math. Soc. 31 (1972), 165-169. MR 44 #4692.
- 6. —, Dirichlet finite biharmonic functions with Dirichlet finite Laplacians, Math. Z. 122 (1971), 203-216. MR 45 #2616.

- 7. L. Sario, Extremal problems and harmonic interpolation on open Riemann surfaces, Trans. Amer. Math. Soc. 79 (1955), 362-377. MR 19, 846.
- 8. L. Sario, M. Schiffer and M. Glasner, The span and principal functions in Riemannian spaces, J. Analyse Math. 15 (1965), 115-134. MR 32 #1655.
- 9. L. Sario, C. Wang and M. Range, Biharmonic projection and decomposition, Ann. Acad. Sci. Fenn. A.I. 494 (1971), pp. 1-14.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF HAWAII AT MANOA, HONOLULU, HAWAII 96822

Current address: Department of Mathematics, El Camino College, Torrance, California 90506